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1 Project Description

Logic Programming is a programming paradigm used for knowledge representation and automated reasoning
tasks [4]. Prolog is a well-known example of a Logic Programming language [3]. The performance of
Logic Programs is very sensitive to small code transformations, yielding great opportunity for compilation.
We intend to build a compiler to compile logic programs to more efficient but semantically
equivalent logic programs.

Logic Programs have many features in common with imperative programs, allowing standard compiler
passes to be adapted to this new paradigm. For instance, Logic Programs have basic blocks (called clauses),
control flow edges (called rules), and expressions (called literals). The uniquely challenging aspect of the
control flow of a Logic Program is that it exhibits non-determinism, so execution frequently forks into
multiple parallel copies of the original, each selecting a different rule. As forks continue, this quickly leads
to a combinatorial explosion that severely limits scalability. Reducing the branching factor of this execution
fork tree can therefore provide super-exponential improvements in performance.

We believe the compilation passes we learned in class each have an analog for Logic Pro-
grams. The most impactful optimization will be Dead Code Elimination, as it will remove clauses and rules
that can never be executed or can never lead to a relevant computation, leading to a sizable reduction in
branching factor and work done at each program step. Our 75% goal is to complete this pass, including all
the tooling required to apply Dataflow passes to this novel use case (Section 2.1).

The next compilation of interest is in optimizing the process used to determine which rules can be applied
at a given program point. This is called unification and accounts for the majority of logic programming
runtime. Computing specialized unification procedures for the rules of the input program can dramatically
speed this up in common cases. Furthermore, a flow-sensitive account of unification can allow the logic
programming engine to determine which rules can be traversed as a function of the control flow leading up
to that point. This marks our 100% goal.

The final compilation pass we wish to attempt is Conditional Constant Propagation. If an instruction
does not exhibit non-determinism, we can precompute its value and propagate this change. This special-
ization both improves runtime performance and would potentially allow the other compiler passes to more
aggressively reduce the rules and clauses in the program. As we envision it, this pass would require significant
structural modification to the program (adding parameters to functions, modifying the call sites, introducing
auxiliary variables) and the ability to undo these modifications once an logic program finishes executing, to
recover a solution for the original. For this reason, this is our 125% goal.

We will evaluate our compiler passes on a suite of logic programs for automated theorem proving appli-
cations. These programs represent mathematical statements, where the output of the program is a formal
proof in Dependent Type Theory. We will measure the runtime of these programs with and without our
optimizations, the compilation time, and the number of rules and clauses that are optimized or removed by
our preprocessing. We will build our passes in the Canonical logic programming engine, discussed in Section
2.5.

For much of the history of logic programming, logic programs have been hand-authored. Given a problem,
the author manually implements an encoding with good performance. For automated theorem proving

1



applications, logic programs come directly from interactive theorem provers like Lean, without regard for
performant encoding. As for imperative programs, this added level of abstraction between the user and their
program makes compilation essential.

2 Logistics

2.1 Plan of Attack and Schedule

We will proceed much as we proceeded through the course assignments. We will define the CFG from a
given logic program, implement a dataflow framework for passes, and implement a number of passes that
facilitate analogues to optimizations taught in the course.

Week Yichen Chase
10/21 Build CFG Data Structure Implement filtering rules to CFG edges
10/28 Dataflow Pass System Filtering type-incorrect CFG rules
11/4 Liveness Pass Dead Code Elimination
11/11 Reachability Pass “Compiled Unification” à la TWELF
11/18 Conditional Constant Propagation Flow-sensitive CFG edge filtering
11/25 Benchmarking and begin report Benchmarking and begin report

2.2 Milestone

The major milestone we expect to complete is Dead Code Elimination. This involves the implementation of
the dataflow framework and CFG generation. We expect Dead Code Elimination to significantly reduce the
branching factor of most logic programs, with a performance improvement at least 2x on average.

2.3 Literature Search

There is existing literature on compilation for logic programming. The first major advancement was the
Warren Abstract Machine (WAM), which is an intermediate representation for executing Prolog logic pro-
grams with a small instruction set [1]. Improvements in optimizing this intermediate representation follow
in subsequent works [10, 5, 12, 6, 11]. At a lower level, wamcc is a compiler for WAM instructions to C
programs that execute the semantics [2].

However, none of these works directly modify the input program. The performance gains obtained
from these papers is exclusively from better definitions and implementations of intermediate representation
instructions, as well as the ability to compile certain subproblems to concrete predicates. Our work assumes
that the logic programming engine is fixed and seeks to find transformations that change the underlying
work that needs to be done. Furthermore, none of these works can be applied for the use case of automated
theorem proving, which requires Dependent Type Theory.

To our knowledge, this has only been attempted by Prof. Frank Pfenning and his students on the TWELF
logic programming system [8]. We take inspiration from TWELF’s “Compiled Unifiers” technique [9] which,
although unpublished, has been brought to our attention by Prof. Pfenning directly.

2.4 Resources Needed

No special software, hardware, or compute is required for this project.

2.5 Getting Started

Through writing this proposal, we have outlined the analogous optimizations to those taught in the course
and have a basic understanding of how they must be implemented. We intend to build these into the
Canonical logic programming engine [7]. Chase Norman built Canonical over the past year to efficiently
execute logic programs for use cases in automated theorem proving for mathematics. This will provide the
basis on which our optimizations can be implemented and benchmarked.
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