
Compiling Logic Programs

Yichen Ni (yichenn@andrew.cmu.edu)
Chase Norman (chasen@cmu.edu)

November 2024

Project Webpage: chasenorman.com/compiler.html

1 Introduction

1.1 Problem

Logic Programming is a programming paradigm used for knowledge representation and automated reasoning

tasks [6]. Prolog is a well-known example of a Logic Programming language [5]. Because Logic Programs

declaratively represent the specification for their solution rather than imperatively implement a procedure

to construct it, Logic Programs have a search tree semantics that can quickly become intractable. The

performance of a Logic Program is therefore highly dependent on the “encoding” of a problem, as this

determines the branching factor of the search tree.

Canonical [12] is a Logic Programming engine designed to prove theorems in mathematics. Given an

arbitrary mathematical statement formalized as a dependent type theory logic program, Canonical can

execute it to find a proof. Canonical is intended to be used my mathematicians doing formalization work [7]

in the Lean [10] interactive theorem prover, which, like Coq [2] and Agda [3], has its foundations in dependent

type theory. A user wishing to prove a lemma or fill in a step of a larger proof may invoke Canonical as a

Lean tactic to exhaustively search for a solution.

Scaling up Logic Programming to handle fully general mathematical reasoning is a challenge. Even

simple problems generate a massive search space. This problem is compounded when the encoding is not

hand-authored but is instead directly translated from Lean’s internal representation, as it is in the case of

Canonical’s Lean tactic. For these reasons, it is essential that we perform as much pre-processing on input

programs as possible to ensure efficient search.

1

Imperative Logic Program
Instruction Goal
Basic Block Premise
CFG Edge Rule

Branch Condition Unification
Program Stack Context

Figure 1: Correspondence

e : E

i : (G → G) → F

h : (E, F) → D

g1 : D → B

g2 : C → B

f : B → A

main_goal : A := ?

Figure 2: A Logic Program Figure 3: CFG

1.2 Approach

While imperative programs and logic programs appear quite different in their semantics, there is a sur-

prisingly close correspondence that allows the methods from optimizing compilers to be applied analogously.

Figure 1 shows this correspondence, and the terminology which we will use interchangeably. Following course

concepts, we built a data structure for the control flow graph of a logic program, populated it with basic

blocks and edges from the input program, and implemented a system for dataflow passes to be written on

the CFG.

Using this dataflow system, we implemented passes for reachability and liveness, which proceed nearly

identically to their imperative counterparts. With these passes, we completed Dead Code Elimination. We

are then further able to refine the edges in the control flow graph using flow-sensitive analysis powered

by Canonical itself. Using the analysis from earlier passes and bootstrapping with a small query to the

Canonical theorem prover, we can ascertain that certain branches can never be taken.

With information gathered through the passes, we are able to implement several impactful optimizations

at runtime. Compilation has accelerated a number of essential operations, like checking branch conditions

and managing program state. These optimizations culminate in a path-sensitive analysis (again bootstrapped

by Canonical) to determine pairs of edges that can never be executed in sequence.

An example of how dead code elimination can help optimize a CFG can be shown in the example shown

below, where the problem is defined in Figure 4. Figure 5 shows the CFG representation of the same problem,

where main goal is marked with red, final premises are marked green, and arrows represent the rules. After

applying DCE, the CFG size is reduced significantly.

1.3 Related Work

There is existing literature on compilation for logic programming. The first major advancement was the

Warren Abstract Machine (WAM), which is an intermediate representation for executing Prolog logic pro-

2

cy1 : D → E

cy2 : E → D

p : D → A

f : ((a : A) → B) → A

g : C → B

c : C

main_goal : A := ?

Figure 4: A Logic Program Figure 5: CFG (Original) Figure 6: CFG (DCE Applied)

Figure 7: Comparison of Logic Program Representations and CFGs

grams with a small instruction set [1]. Improvements in optimizing this intermediate representation follow

in subsequent works [15, 9, 17, 11, 16]. At a lower level, wamcc is a compiler for WAM instructions to C

programs that execute the semantics [4].

Our work does not involve an intermediate representation of the logic program for efficient execution.

Instead, the Canonical logic programming engine stays roughly the same. Our performance gains come from

compilation passes that remove edges from the control flow graph, effectively changing the encoding of the

input program and reducing the branching factor during search. Furthermore, many of the contributions of

the WAM and others exclusively apply to constructs in Prolog, which is not expressive enough to perform

general mathematics. All of our techniques apply to automated thoerem proving in depdendent type theory,

which is an undecidable problem involving higher order unification [8] and heuristic-guided order of executing

instructions.

To our knowledge, compilation for logic programs in dependent type theory has only been attempted by

Prof. Frank Pfenning and his students on the TWELF logic programming system [13]. We take inspiration

from TWELF’s “Compiled Unifiers” technique [14] which, although unpublished, has been brought to our

attention by Prof. Pfenning directly.

1.4 Contributions

Our work contributes to the field of logic programming by providing a comprehensive compiler infrastructure

that adapts traditional compiler optimizations to this novel domain. The primary contributions of our project

include:

• An adaptation of control flow graphs and dataflow system for use with logic programs.

• An implementation of Dead Code Elimination using liveness and reachability passes.

3

• A flow-sensitive pass which uses Canonical to eliminate inaccessible rules from the CFG.

• Several improvements to the performance of unification and metavariable domain computation, driven

by analysis passes and path-sensitive analysis.

The optimizations and analyses we developed enhance the scalability and efficiency of logic programs,

which is crucial for applications like automated theorem proving, where large, complex programs are auto-

matically generated without regard for performance. By introducing automated compiler optimizations, we

bridge the gap between abstract logic representations and practical, performant execution.

2 Background

2.1 Logic Programming

Logic programming is a declarative programming paradigm used extensively for knowledge representation,

automated reasoning, and symbolic computation. Unlike imperative programming, where the programmer

defines specific sequences of operations, logic programming focuses on defining relationships and rules that

describe the problem.

In logic programming, computation is carried out by performing logical inference on a set of rules and

facts. The core mechanism involves finding solutions to a given query by attempting to unify it with known

rules and facts, using a process called unification. This non-deterministic search process, combined with

backtracking, is what gives logic programming its flexibility, but it also presents challenges for efficient

execution.

A logic program begins execution with the statement you are looking to prove. We call this the main

goal. To achieve this goal, a number of premises are provided, some of which may apply. To apply a premise,

you must supply the input parameters that the premise requires. These parameters are themselves goals that

are filled recursively. Furthermore, these goals may be accompanied with premises of their own, which are

added to the set of premises available to that goal in a process known as context extension. This pattern of

goals with premises and premises with goals continues in a tree structure, defining the entire logic program,

with the main goal as the root.

Logic programs have unique characteristics that differentiate them from imperative programs. These

include the use of non-determinism, backtracking, and complex relationships between goals and premises.

Due to these properties, the execution of logic programs often involves frequent branching, resulting in a

combinatorial explosion of execution paths. This explosion in the number of possible paths that a program

can take presents a significant barrier to scalability.

4

2.2 Dataflow Analysis for Logic Programming

Dataflow analysis is a method used in compiler theory to gather information about the possible set of values

calculated at various points in a program. It forms the basis of many compiler optimizations. For our project,

we extended dataflow analysis to logic programming by implementing reachability and liveness analyses on

the CFG.

Using these analyses, we implemented Dead Code Elimination (DCE) to remove all unreachable or

irrelevant components of the program. This not only reduces the branching factor in the CFG but also

simplifies the logic program, improving performance by reducing the workload during runtime.

3 Implementation Details

3.1 CFG

The implementation of our compiler begins with the construction of a Control Flow Graph (CFG) to represent

the logic program. Our CFG contains a list of all of the goals and premises in the program, along with their

parent-child relationship as described in Section 2.

The edges for the control flow graph do not point from basic block to basic block. Instead, they point

from instruction to basic block. Conceptually, this is because all instructions in a basic block are executed in

parallel, and so are all the final instruction in their block and will execute a branch to another basic block.

So, while a CFG in an imperative context can abstract instructions with basic blocks, the duality between

goals and premises is fundamental in our CFG implementation.

Each goal in the CFG stores its parent premise, its child premises, and the edges connecting it to premises.

Symmetrically, each premise stores its parent goal, its child goals, and the edges connecting other goals to

it.

A key challenge in the creation of the CFG is populating the edges. In imperative code, this can be done

directly through an analysis of jump and branch instructions to find their targets. For Logic Programming,

determining whether a premise can apply to a goal is called the unification problem and it is undecidable

in general. The issue is that the success or failure of a unification is dependent on the assignment to earlier

goals (hence dependent type theory). We must be conservative and allow all edges that may possibly be

taken with success. To address this, we implemented multiple layers of increasingly precise filters on the set

of edges.

First, we attempt an exact match on the premise and goal type. These types are expressions in an

abstract syntax tree, and so proceed by comparison of each of the nodes. If they disagree at any position

5

of the tree, we can be certain they will never unify. This happens most frequently. However, if each of

the branches either succeeds or reaches a dependency on an earlier goal (called a metavariable) we must

conservatively assume the constraint must be satisfiable. This algorithm is complete for simple type theory

but misses a number of impossible edges where dependency arises.

Say, for instance, we have some premise which is a generic function, that for any input type T returns

an element of type T . If our goal is to produce a proof of the proposition x = y, can we use this premise?

If we assume that propositions are not data types, it is clear that T and 0 ≤ 1 will never match. However,

since the value of T is a user-supplied goal, our naively assume the constraint is satisfiable.

To solve this issue, we observe that for any unification problem matching a and b, their types A and

B must also unify. In type theory, each expression has a type, including types themselves. In the above

example, the type of T is Type and the type of 0 ≤ 1 is Prop. Since Type ̸= Prop, we can exclude this edge.

Our second version of this algorithm begins much like the first. However, if the first algorithm generates

a constraint, we recurse on the types of the two sides. Eventually, there will either be an exact match or a

failure. This improvement comes with a significant reduction in rules. Further refinements on this algorithm

will be discussed later, but they require analysis passes to be performed first.

3.2 Dataflow Framework

By design, our dataflow framework precisely matches the pseudocode given in lecture. The user provides

functions that (1) specify the order that nodes are visited, (2) specify the predecessors/successors of a node,

(3) transfer across a node, (4) meet two output values together, (5) create a value at the initial condition,

and (6) create a value at the boundary condition. Running the pass then populates a map with the values

at each of the nodes.

Our dataflow framework handles forwards and backwards passes through genericism. Simply changing

function (2) to output either predecessors or successors changes the direction. More surprisingly, our dataflow

framework is generic over the type of the nodes. This is due to our goal and premise duality. We found that

some passes are best implemented on goals/instructions and others are best implemented on premises/basic

blocks.

3.2.1 Reachability

A premise can only be applied to a goal if it is in the context of that goal. The main goal, for instance,

only has access to its own premises, and not the local (child) premises of any other goal in the problem.

We implement a forward pass called Reachability that for each goal determines which premises could be

6

accessible to it in any path.

Since we are looking for accessible premises in any path, we use union as our meet function. The transfer

function over a goal simply adds the local (child) premises of that goal. The predecessors of a goal are all of

the goals with a rule to its parent premise. Because this transfer function is distributive, we obtain a set of

premises for each goal that is the union of all contexts that will be observed for that goal over the course of

the algorithm.

Using this pass, we can remove rules in the following way: for each rule between a goal and a premise,

if the premise cannot be in the context of that goal, we are safe to remove the rule. We can also remove a

rule if it does not contain the premises of the main goal, as this means it is inaccessible from the main goal.

Much like imperative unreachable code, this does not improve the runtime performance on its own, as such

rules would never be attempted. Rather, it is useful for improving the precision and performance of future

optimizations to be performed, especially those that iterate over rules or require the contexts of goals to be

known.

While the above implementation proceeds much like reachability analysis in imperative programming,

there is an improvement that applies only in this setting, which we refer to as Reachability+. When taking

the predecessors of a node, we enforce not only that those predecessors have a rule to the parent premise

of this goal, but that our parent premise is also reachable to that goal, so that this rule may be invoked.

Essentially, we take reachability of rules into account during reachability.

This improves the pass significantly, but also introduces a dependence on the output of the dataflow

pass in the successor computation function. This ostensibly breaks the termination guarantee for dataflow.

However, since rules are strictly added as reachable over the course of the algorithm, and there are finitely

many rules, the pass must continue to converge. Each pass from this point forward only operates on reachable

edges.

3.2.2 Liveness

The Liveness pass is a backwards pass that determines for each premise which goals are live at that point.

We consider a goal to be live if there is some live premise that matches with it, and we consider a premise to

be live if all of its goals are live (such that it can be applied). The base case is a premise that has no goals,

which can be applied unconditionally.

The successors of a premise are all of the premises that apply to each of the its goals, unioned together.

The transfer function for a premise checks whether all the goals of the premise are live and if so adds all

goals that unify with this premise to the set of live goals. The meet function is union and the boundary and

initial sets are empty. This pass is quite similar in form to the Liveness pass from lecture.

7

Using the result from this pass, we can complete Dead Code Eliminaton. For any rule between a goal

and a premise, if the goal is not live at that premise, remove the rule. This has the impact of deleting all

rules involving dead premises or goals. Because we assume at the start of the algorithm that all goals are

dead, we do not consider zombie code to be live.

3.3 Flow-Sensitive Analysis

As mentioned before, determining whether an edge in the CFG can be traversed is an undecidable problem,

because it requires finding assignments for the dependent metavariable goals that satisfy the unification

constraints. For a typical compiler, this would be the end of the story. However, since Canonical is a tool

designed to exhaustively search for assignments to these metavariables, there is an opportunity to have

Canonical improve compilation, not just the other way around.

Imagine we have a premise for reflexivity stating that for all x, x = x. Can we use this rule to prove

0 = 1? Doing so generates two constraints on the metavariable x. One says that it is equal to 0 and the other

says it is equal to 1. Clearly these constraints are inconsistent, but our earlier algorithms do not attempt

any consistency checks on these equations.

For each rule surviving Dead Code Elimination, we attempt to validate with Canonical whether applying

it causes inconsistency in constraints. To ensure that our application of this rule is sufficiently general to

subsume all possible applications of the rule, we must ensure that the goal we apply it on has access to all

of the premises in its context that it could possibly have access to. If we assume the goal has access to all

the premises in the problem, our result will be imprecise.

Thankfully, we have already solved this problem with the earlier reachability pass, defining for each goal

a set of premises which is the meet-over-paths for what will be accessible in any execution. In this sense, our

pass will be sensitive to the flow of the program. Initializing a goal with this maximal context and applying

the rule in question, we obtain constraints. We then continue executing Canonical on a low depth setting,

such that the query will terminate quickly.

If Canonical reports that the constraints are unsatisfiable, we can safely remove the rule. If instead it is

satisfiable we know the rule must stay. Often, Canonical will timeout, in which case we must conservatively

assume the rule is consistent.

This technique can be used to solve the reflexivity example earlier, as well as other simple cases of incon-

sistent assignments to metavariables. In fact, this technique is also capable of noticing some metavariables

that have no possible assignment even without equations, allowing rules to be eliminated in this case as

well. Importantly, as Canonical improves in capability, especially in its capability to refute mathematical

8

statements, these improvements will also be seen in the compilation of logic programs.

3.4 Path-Sensitive analysis

All optimizations thus far have concerned the removal of rules unconditionally. It can be helpful for the

performance of the logic program to find simple predicates that eliminate certain rules from consideration

based on runtime information. For instance, we can determine that certain pairs of rules cannot be applied

in sequence. At runtime, we can only consider rules that are available based on the previous rule that was

applied.

We apply the same methodology as the flow-sensitive analysis. We create a goal with the maximal

context, apply a rule, and then apply a second rule on one of the newly created goals. From here, we can

run a short query to Canonical for whether the resulting state and constraints are satisfiable. There are

frequently paths where a certain rule cannot be applied, and this allows us to pre-compute that information.

We limited ourselves to considering sequences of two rules because we believe this strikes a balance

between performance and precision. In a graph with n vertices and a constant number of edges per node,

this gives a runtime of O(n2). This is not out of line with the other passes we have implemented. At runtime,

we use a table which indexes the available rules by the previous rule that was applied and the current goal.

This allows us to avoid the paths that have been proven inaccessible during this step.

3.5 Accelerating Unification

All of the above refinements on the CFG are not useful if they do not drive improvements in performance.

A sizable majority of the runtime of Canonical is spent testing candidate assignments for metavariables to

see if the unification constraints are violated. Using information from the CFG and dataflow passes, we can

drastically reduce the number of tests that need to be performed.

Previously, to find the set of candidate assignments to a metavariable, we would iterate through the

context of the metavariable and attempt unification, filtering those that fail. As discussed previously, the

majority of these fail immediately. After performing the passes on the CFG, we now pre-compute the

available rules for each goal and, in the case of path-sensitive analysis, index these rules by the previously

applied rule. At runtime, we iterate over these rules rather than the entire context of the metavariable and

consider only the premises in the context that correspond with these rules. Essentially, we have pre-computed

a filter on the set of options such that we only test premises that will succeed in at least some circumstances.

Our reachability, liveness, flow-sensitive, and path-sensitive analysis do not merely remove rules that

immediately fail unification. Each of these passes also remove rules that provably cannot result in a successful

9

execution, either because the premise is unreachable, dead, or because the rule generates an inconsistent

state as determined exhaustively by Canonical. For this reason, the reduction in rules not only improves

the rate at which rules are performed, but also improves the quality of rules that are performed, potentially

leading to an asymptotic improvement in performance.

When initially populating the CFG, we store an additional boolean for each of the rules. If the unification

does not generate any constraints on metavariables (i.e. the two sides exactly match) we mark it as always

succeeds. When testing an assignment to a metavariable using this rule, we can skip the unificationt test and

generation of unification constraints, since we know the unification will be successful without constraints.

This exchanges a recursive comparison of syntax trees, with β-reduction at each node, to a single boolean

check where applicable.

Another clear inefficiency in this computation is in how we manage unification constraints on the metavari-

able. For each candidate assignment, we check to see if the constraint is violated and if so we remove it. It

would be more efficient to analyze the constraints up front, and analytically determine which assignments

will satisfy them. This is the idea behind what we call masking. For each constraint of the form ?X ≡ f(· · ·),

we do not consider assignments to the metavariable ?X that are an application to a variable other than f .

In general, there are a number of cases that cannot be handled by this masking, but it suffices to remove

many candidate assignments without expensive checks.

The final performance improvement we made to Canonical was in the heuristics of which goal/metavariable

to work on next. Without loss of generality, it is always advisable to work on a metavariable that has only

0 or 1 options for assignment. In the 0 case, we are immediately able to cut the branch and backtrack

and in the 1 case, we simply gain more information without forking the tree. Determining the size of the

domain of a metavariable is the most expensive operation performed by Canonical, and cannot be performed

on every metavariable at every step. Using what we determined at compile time, however, we can find an

upper-bound on this number. We can simply consider the set of premises in the context of the metavariable

corresponding to rules present in our CFG. Since we have precomputed information about this set, we can

determine the size in roughly constant time. Using this heuristic we can identify metavariables that are good

candidates to work on next.

4 Experimental Setup

We benchmark Canonical on 20 evaluation problems written in the Lean interactive theorem prover, which

are converted to logic programs in Canonical’s internal representation by a custom conversion tool. These

problems were hand-authored by Prof. Jeremy Avigad and ourselves to represent a set of type-theoretically

10

interesting and algorithmically challenging problems for Canonical. The problems involve reasoning about

inductively defined datatypes like lists and natural numbers, proving properties by induction, with equality

reasoning, and using provided lemmas. For example, one such problem is to prove that the append operation

on lists is associative. These problems frequently take millions of steps for Canonical to find a solution. It is

worth noting that despite the challenge of these benchmarks, logic programs tend to have many fewer basic

blocks than imperative programs. Our examples tend to have fewer than 40. For this reason, we disregard

compilation time as a small fixed cost.

Each of our benchmarks were performed on a 2020 Mac Mini with M1 and 16GB of RAM. Compiler

benchmarks are deterministic and so are each performed once. Efficiency improvements are measured in

steps taken by Canonical per second, and are performed in a sequential mode which uses a single thread.

We measured total step count using parallelism, but averaged over 5 runs to decrease the variance.

5 Experimental Evaluation

Figure 8: Number of Rules Optimized Figure 9: Path-Sensitive Optimizations by Example

5.1 CFG optimization

Figure 8 shows the breakdown of CFG rules before and after our optimizations on each of our 20 test

problems. We count rules by percentage of the total possible number of edges in the CFG–that is the

number of goals multiplied by the number of premises. While this may sound extremely pessimistic, our

reachability analysis (in blue) found that over 98% of these potential rules are reachable and therefore were

attempted by Canonical before our mitigations.

Next, we look at the result of the basic “exact match” algorithm for populating the CFG in red. This

results in an average reduction by 33% of edges in the graph, which accounts for the vast majority of edges

removed by our procedure. This is further refined to the final output of our algorithm, in yellow, which

11

consists of about 65% of all available rules. We have found that reachability and liveness, although they did

contribute to further passes, did not have a significant impact on our test examples. This is because the

script used to generate the logic programs from Lean uses a crawling procedure that defines only the notions

that are required to solve the problem and only terminates when this has reached a fixedpoint. While this is

slated to change in the future, this behavior essentially guarantees reachability and liveness of the resulting

definitions, rendering these passes ineffective. The design of the translation from Lean to logic programming

also meant there was a relatively limited number of distinct types mentioned in the problem, meaning there

was less opportunity for our basic algorithm to differentiate.

One example stands out, mul even, with a 15% reduction in rules between the basic algorithm and our

final approach. This is not due to reachability and liveness for the reason above, but instead due to the flow-

sensitive analysis. There are a number of goals (corresponding to typeclasses in Lean) which only have a single

option for their assignment, significantly constraining the potential assignments to other dependent goals.

Using Canonical as an oracle, the compiler is able to eliminate rules that violate the available typeclasses,

for instance forbidding arithmetic addition on two types that are not numeric. As we believe typeclasses will

become an important challenge for Canonical in terms of solving, we find this result promising.

Of these rules in our CFG, we found an average of 18% of them always succeed (i.e. they produce no

unification constraints). These are shown in green and represent a subset of rules that do not trigger a

unification in Canonical.

Figure 9 shows the number of path-sensitive optimizations that were found in each example. These are

pairs of rules that are inconsistent to be applied in sequence. On average, there were 39 such optimizations.

5.2 Performance Optimization

Figure 10: Efficiency Improvement Figure 11: Step-count (log) applying compilation

Figure 10 shows the percentage improvement in runtime efficiency as we successively apply our opti-

12

mizations. We calculate efficiency as the number of steps (assignments to metavariables) completed by the

Canonical per second until completion or timeout.

The first performance improvement comes from the reduction of rules in the CFG, in blue. We observe

an average improvement of 27% in efficiency from no longer attempting these inconsistent edges. Adding

our path-sensitive analysis (in red), we achieve an 80% improvement over the baseline on average. In some

problems, especially those with short runtimes, we observe very significant performance improvements from

path-sensitive analysis. This is because the short queries performed to Canonical are able to solve or nearly

solve the problem in question. As a result, the path-sensitive information we generate is likely close to the

absolute optimal, where only directions that can lead to a solution are considered. While we cut the graph

off at 200%, these problems can saw larger performance gains, topping out at almost 400%.

Adding always succeeds to shortcut unification does not appear to reliably show improvement in per-

formance. Our evaluation even shows a 1% degradation in performance, likely within the margin of error.

We believe this is because most unifications that do not generate unification constraints are simple, like

Nat ≡ Nat, which can be checked nearly as fast as checking a boolean.

Finally, we add equation masking in green, resulting in a cumulative average performance improvement

of 97% over the baseline. Overall, this nearly matches our expected performance improvement from our

project proposal at 2x.

Figure 11 shows the total number of steps Canonical took during solving before and after compilation

for each example, on a log scale. We exclude examples that are solved during compilation and that timeout.

Each of these figures is the average over 5 separate runs, as non-deterministic heuristic choices can affect

the steps that are taken. From this graph, we can observe that there is no significant positive impact of

compilation to the asymptotic performance of Canonical, despite the potential for this as mentioned earlier.

We suspect this is again due to the lack of dead code in our examples. In general, any asymptotic benefits

in performance are not expected of an optimizing compiler, but are a bonus if they are possible.

6 Surprises and Lessons Learned

When we started this project, the connection between compilation for imperative programs and logic pro-

grams was promising, but it was not until further in development that it become concrete and the depth of

the correspondence started to show. It was surprising how many aspects that had been considered purely

runtime considerations (unification, metavariable domains, heuristics) had so much that could be done ahead

of time. In fact, a number of operations that were once done at compile time are now done at runtime, in-

cluding a number of essential capabilities for working with inductive types. For this reason, the compiler is

13

now a required part of the Canonical toolchain, performing essential operations to convert the input problem

into a form for solving. Just as imperative compilation has become an entire field of study, it is clear that

we could not do justice to all of the possible directions with this course project.

Another surprise is perhaps the diminishing returns of attempts to filter out rules. A sizable majority of

inconsistent rules can be found by naive methods, and there are many unification failures at runtime that

have not been converted to a compile-time check. The application of course techniques on logic programming

has cast the subject in a new light, and has generated new ideas about automated theorem proving.

7 Conclusions and Future Work

There is a great amount of potential for future work on this project, which is planned for eventual inclusion in

Canonical. More advanced passes from optimizing compilers, like conditional constant propagation and loop

invariant code motion, have analogues in the logic programming setting as well. However, as discussed in our

project proposal, these optimizations would require an additional component known as proof reconstruction.

The output of a logic program amounts to an execution trace of the successful branch of the search tree,

which would not be preserved under these transformations. The ability to perform these transformations

with the necessary information to recover the solution to the original problem is a topic for future work.

There were a number of other potential optimizations that we considered during the development of the

compiler. We could identify cases of so-called pattern unification which have a unique, efficiently computable

solution, allowing for a shortcut to be taken during runtime. The compiler could also be further involved in

analysis used to define the heuristics for which instructions should be executed in which order, and which

branch of the search tree should be explored further. In particular, analyzing the dependencies between

instructions could be within the purview of the compiler. If the estimates for the size of the domain of

a metavariable produced by our compiler are strong enough, they may even obviate the need to compute

domains entirely, cutting the runtime at least in half. Finally, considering extensions to the concepts from

the Warren Abstract Machine that do extend to the dependently typed setting could be another avenue for

future research.

8 Distribution of Total Credit

Chase Norman will take majority of the credit, he implemented the CFG representation and the optimization

passes. Yichen Ni worked on the evaluation and documentation of the project. The final distribution of

work is 60%-40%.

14

References

[1] Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT Press, Aug. 1991.

isbn: 9780262255585. doi: 10.7551/mitpress/7160.001.0001. url: https://doi.org/10.7551/

mitpress/7160.001.0001.

[2] Yves Bertot. “A Short Presentation of Coq”. In: Theorem Proving in Higher Order Logics. Ed. by Ot-

mane Ait Mohamed, César Muñoz, and Sofiène Tahar. Berlin, Heidelberg: Springer Berlin Heidelberg,

2008, pp. 12–16. isbn: 978-3-540-71067-7.

[3] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda – A Functional Language with

Dependent Types”. In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer et al. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 73–78. isbn: 978-3-642-03359-9.

[4] Philippe Codognet and Daniel Diaz. “wamcc: Compiling Prolog to C”. In: Logic Programming: The 12th

International Conference. The MIT Press, June 1995. isbn: 9780262291439. doi: 10.7551/mitpress/

4298.003.0037. eprint: https://direct.mit.edu/book/chapter-pdf/2304255/9780262291439\

_cbf.pdf. url: https://doi.org/10.7551/mitpress/4298.003.0037.

[5] Alain Colmerauer and Philippe Roussel. “The birth of Prolog”. In: SIGPLAN Not. 28.3 (Mar. 1993),

37–52. issn: 0362-1340. doi: 10.1145/155360.155362. url: https://doi.org/10.1145/155360.

155362.

[6] Michael R. Genesereth and Matthew L. Ginsberg. “Logic programming”. In: Commun. ACM 28.9

(Sept. 1985), 933–941. issn: 0001-0782. doi: 10.1145/4284.4287. url: https://doi.org/10.1145/

4284.4287.

[7] John Harrison, Josef Urban, and Freek Wiedijk. “History of Interactive Theorem Proving”. In: Com-

putational Logic. Ed. by Jörg H. Siekmann. Vol. 9. Handbook of the History of Logic. North-Holland,

2014, pp. 135–214. doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 444 - 51624 - 4 . 50004 - 6. url:

https://www.sciencedirect.com/science/article/pii/B9780444516244500046.

[8] Gérard P. Huet. “Higher Order Unification 30 Years Later”. In: International Conference on Theo-

rem Proving in Higher Order Logics. 2002. url: https://api.semanticscholar.org/CorpusID:

20550274.

[9] C.S. Mellish. “Some global optimizations for a PROLOG compiler”. In: The Journal of Logic Program-

ming 2.1 (1985), pp. 43–66. issn: 0743-1066. doi: https://doi.org/10.1016/0743-1066(85)90004-

4. url: https://www.sciencedirect.com/science/article/pii/0743106685900044.

15

[10] Leonardo Mendona de Moura et al. “The Lean Theorem Prover (System Description)”. In: Automated

Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany,

August 1-7, 2015, Proceedings. Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes

in Computer Science. Springer, 2015, pp. 378–388. doi: 10.1007/978-3-319-21401-6_26. url:

https://doi.org/10.1007/978-3-319-21401-6_26.

[11] K. Muthukumar et al. “Automatic compile-time parallelization of logic programs for restricted, goal

level, independent and parallelism”. In: The Journal of Logic Programming 38.2 (1999), pp. 165–

218. issn: 0743-1066. doi: https://doi.org/10.1016/S0743- 1066(98)10022- 5. url: https:

//www.sciencedirect.com/science/article/pii/S0743106698100225.

[12] Chase Norman. url: https://chasenorman.com.

[13] Frank Pfenning and Carsten Schürmann. “System Description: Twelf — A Meta-Logical Framework

for Deductive Systems”. In: Automated Deduction — CADE-16. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1999, pp. 202–206. isbn: 978-3-540-48660-2.

[14] Brigitte Pientka. url: https://github.com/standardml/twelf/blob/main/src/opsem/README.

[15] Anderson Faustino da Silva and Vı́tor Santos Costa. “The Design and Implementation of the YAP

Compiler: An Optimizing Compiler for Logic Programming Languages”. In: Logic Programming. Ed.

by Sandro Etalle and Miros law Truszczyński. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 461–462. isbn: 978-3-540-36636-2.

[16] Peter Van Roy and Alvin M. Despain. “High-Performance Logic Programming with the Aquarius

Prolog Compiler”. In: Computer 25.1 (Jan. 1992), 54–68. issn: 0018-9162. doi: 10.1109/2.108055.

url: https://doi.org/10.1109/2.108055.

[17] Neng-Fa Zhou. “Global Optimizations in a Prolog Compiler for the Toam”. In: The Journal of Logic

Programming 15.4 (1993), pp. 275–294. issn: 0743-1066. doi: https://doi.org/10.1016/S0743-

1066(14)80001-0. url: https://www.sciencedirect.com/science/article/pii/S0743106614800010.

16

